If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-14y+5=0
a = 8; b = -14; c = +5;
Δ = b2-4ac
Δ = -142-4·8·5
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6}{2*8}=\frac{8}{16} =1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6}{2*8}=\frac{20}{16} =1+1/4 $
| -7+6i=-9+3i | | -8n+7n+8=4 | | 4y+27=7y | | 7x-5(-4x-14)=-497 | | y-200=20(5) | | -(4/5)+((1/5)v)=-(4/3) | | 5(c+4÷5)+6=50 | | 13x-38=15x+24 | | x-70=11+10x | | 2n+3=1/2n+12 | | x-152=136-7x | | 55-5x=-12x-85 | | 1/2w-6=w+7 | | 2n+3=1/2+12 | | |1/2w-6|=|w+7| | | .5(6m-8)=18 | | 84-2y=10 | | 3k-11-7k=9k+3 | | -80+3x=151-8x | | 4b+6=12 | | -10=-10+7c-10 | | (x+7)/3=6 | | 2t=2^(5) | | -208-2x=-12x+62 | | 13y-4-5y=20 | | 0=2x^2+12x+14 | | x+7/3=6 | | 4(6x)=(-99) | | -208-2x=-12+62 | | -3(4+5a)=-87 | | 16a-10a=8-4 | | .6m=-24 |